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Abstract
In natural language processing, we are con-
cerned about domain generalization of our
model when it comes to real life scenarios. In
addition, researchers find that adversarial train-
ing, while improves robustness, often restricts
model’s ability for generalization. The current
state-of-the-art adversarial training algorithm
SMoothness-inducing Adversarial Regulariza-
tion and BRegman pRoximal poinT opTimiza-
tion (SMART, (Jiang et al., 2020)) algorithm
resolves this conflict. We suggest a variation
of SMART, the Scale-invariant-Fine-Tuning
(SiFT) which is inspired by the brief descrip-
tion in the DeBERTa (He et al., 2021) paper.
Our implementation of SiFT shows slight in-
crease in in-domain testing results. More im-
portantly, our classifier’s performance on out-
of-domain datasets is improved by approxi-
mately 10% comparing to SMART.

1 Introduction

Domain generalization is a capability of a model
that allows it to be trained in one domain and per-
form well in another unseen domain. The concrete
definition of domain varies case by case. For ex-
ample, it is intuitive to believe that a generalized
model which performs well on Twitter sentiment
classification should also obtain good results on
IMDB comment sentiment datasets.

In the SMART paper, the authors first use multi-
task learning (MTL, (Liu et al., 2019a)) with
SMART to train shared embeddings to regularize
and prevent over-fitting. They have the regular fine-
tuned model on each task as the baseline. Then,
they test the MTL model with SMART on SNLI
and SciTail, which are considered out-domain tasks.
The results show consistent improvement over the
baselines.

∗First Author
†Co-Second Author
‡Co-Second Author

More specifically, SMART consists of two sec-
tions. First, it introduces smoothness-inducing
adversarial training. It creates a adversarial loss
Rs(θ) which is defined to be the symmetrical KL-
Divergence of 1) output of the model with parame-
ters θ and input x, and 2) output of the model with
the same set of parameters θ but different input x̃,
which is the perturbed embeddings. SMART com-
bines this adversarial loss and the regular model
loss. Then it optimizes this combined loss so that
the output of the model does not change much when
a small perturbation is injected, thus smoothness.
Second, SMART incorporates Bregman Proximal
Point Optimization to optimize the regularized loss
in order to avoid aggressive update. It is done by
using symmetrical KL-Divergence again to moni-
tor the change in the outputs when the parameter θ
is updated in each iteration.

Our research is driven by the question: if the out-
of-domain datasets contain words which have very
different embeddings comparing to the in-domain
dataset, how do we improve the SMART algo-
rithm’s generalization stability. SiFT becomes a
solution to this problem, as it contains an extra step
of normalization which effectively eliminates the
variance explained above. The adversarial training
procedure is the same in SiFT and SMART, except
that the embeddings are perturbed after they are
normalized by layer in SiFT. The normalization
procedure used is Layer Normalization (Ba et al.,
2016). Layer normalization deals with each token’s
embedding vector, which should be in the same di-
mension. For instance, in BERTbase model, layer
normalization manipulates the vectors which have
dimension of 768.

Our implementation of SiFT splits the regular
BERT and DeBERTa models into embedding layer
and the rest. We process the output of the embed-
ding layer in the following three steps: normaliza-
tion, perturbation, de-normalization. Then we feed
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it into the rest of the model. The logits we obtain
from this setup is the further used to calculate the
adversarial loss. Our experiment first assures that
SiFT does not hurt regular in-domain testing. Then
we compare models’ performances on an out-of-
domain dataset with SiFT and SMART. We have
proved that models with SiFT consistently outper-
form models with SMART on an out-of-domain
dataset by approximately 10%. This shows that by
first normalizing the embeddings before perturbing
them improves models’ ability to generalize.

2 Background

In recent years, pretrained language models fine-
tuned for downstream tasks like BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019b), and
DeBERTa (He et al., 2021) have achieved SOTA
performance in various benchmarks like GLUE
(Wang et al., 2019). However, fine-tuning algo-
rithms sometimes overfit the data and result in poor
generalization performance (Jiang et al., 2020).

2.1 Random Perturbation Regularization

Classical regularization techniques augment the op-
timization objective with a penalization term with
a hyperparameter (Miyato et al., 2018). From a
Bayesian perspective, the addition of the regulariza-
tion terms serve as a prior belief of the conditional
output distribution p(y|x) of the model (Bishop
2006; Miyato et al. 2018). For the model to have
good generalization performance, the conditional
output distribution p(y|x) of the model should be
smooth relative to the conditional input x (Miyato
et al., 2018). In other words, the model should pro-
duce roughly the same output distribution p(y|x) if
the input data x is isotropically perturbed (Miyato
et al., 2018).

Exploiting the idea of random perturbation uni-
formly in all directions, it has been demonstrated
that training neural network models with random
noise perturbation to the input x is equivalent to
Tikhonov regularization (Bishop, 1995).

Subsequent studies by Szegedy et al. (2014) and
Goodfellow et al. (2015) show that random per-
turbation in the adversarial direction leads to dra-
matic changes in the output distribution. Algo-
rithms like adversarial training in supervised set-
tings are proposed to add perturbations to the most
anisotropic direction in the optimization objective
(Miyato et al., 2018).

2.2 Adversarial Training
It is suggested that adversarial examples con-
sistently leads to misclassification in a varieties
of machien learning and neural network models
(Goodfellow et al., 2015). The adversarial training
is then proposed with the optimization formulation
as follows

Ladv(xl, θ) := ls[q(y|xl), p(y|xl + radv, θ)] (1)

where ls(q, p) is a function that measures the differ-
ence between two distribution q(·) and p(·), q(y|xl)
is the true output distribution in the supervised set-
ting, p(y|xl) is the output distribution of the model,
and Dl = {(x(n)l , y

(n)
l )}Nl

n=1 is a labeled dataset
(Miyato et al., 2018). radv is the noise in the adver-
sarial direction that maximize the loss ls between
two distributions. Notice that under L∞ norm,
radv ≈ ε sign(∇xlD[q(y|xl), p(y|xl, θ)]), which is
the original fast gradient sign method regularization
technique proposed by (Goodfellow et al., 2015)
for adversarial trianing.

By minimizing the loss Ladv with respect to the
model output distribution p(y|xl + radv, θ) that is
adversarially perturbated, the output distributions
of the model are forced to be smooth along the
anisotropic direction. Adversarial training thereby
regularizes the model to be robust against adversar-
ial perturbations (Miyato et al., 2018).

In addition, adversarial training in NLP also im-
proves model generalization (Miyato et al., 2017;
Cheng et al., 2019). Some prominent adversarial
training algorithms like FreeLB (Zhu et al., 2020)
uses projected gradient descent (PGD) to update the
noise perturbations that results in more invariance
in the embedding space and hence better model
generalization. CLAPS (Lee et al., 2021) is also
an example of adversarial contrastive learning that
use adversarial inputs as negative examples, which
also leads to improved generalization.

2.3 Virtual Adversarial Training
To extend adversarial training to semi-supervised
learning domain, consider

Lvadv(xl, θ) := ls[q(y|x∗), p(y|x∗+rqadv, θ)] (2)

where x∗ comes from either the labeled dataset
Dl = {(x

(n)
l , y

(n)
l )}Nl

n=1 and the unlabeled dataset
Dul = {x

(m)
ul }

Nul
m=1 (Miyato et al., 2018). Given

that q(y|xul) is not accessible in the semi-
supervised setting, we can approximate q(y|xul)
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by the current estimate p(y|x∗, θ̂) which is a ”vir-
tual” label (Miyato et al., 2018). Then the averaged
Lvadv can be augmented to the full loss as a regu-
larization term. By extending adversarial training
to the semi-supervised domain, we can then regu-
larize the model against adversarial attacks.

2.4 SMART, ALUM, SiFT

Several virtual adversarial training algorithm like
SMART (Jiang et al., 2020), ALUM (Liu et al.,
2020), and SiFT (He et al., 2021) are proposed.
SMART uses a similar adversarial regulariza-
tion term with modification of symmetric KL-
divergence as adversarial loss compared to the stan-
dard VAT adversarial loss. Bregman proximal point
optimization is used to constrain aggressive param-
eter updates (Jiang et al., 2020).

ALUM builds on the SMART VAT training ob-
jective by replacing of the bregman proximal point
optimization with a curriculum learning approach,
which train the model using standard object first
and then switch to virtual adversarial training (Liu
et al., 2020). The curriculum learning approach
leads to faster training time and spare the use of the
Bregman proximal point method (Liu et al., 2020).

The Scale Invariant Fine-Tuning (SiFT) algo-
rithm builds on SMART by applying perturbations
to normalized embeddings (He et al., 2021). It
is claimed that the extra normalization applied to
the word embedding improve the generalization
performance of the DeBERTa and DeBERTa1.5B
model (He et al., 2021). In this paper, we explore
the SiFT algorithm, which is one variant of the
VAT algorithm proposed by (Miyato et al., 2018).
By comparing SiFT with the standard fine-tuning
baseline and SMART, we can see how SiFT differs
from SMART in generalization improvement.

3 Method

As illustrated in the introduction, we make use
of the output embeddings of the embedding layer
in the model. We record the mean and standard
deviation for each embedding during normalization
step. After they are normalized, we move to the
perturbation step, which follows the same structure
as discussed in the SMART paper.

First, we initialize and add a vector of random
noise with mean 0 and standard deviation 0.01 to
the embeddings. Then we follow the same strat-
egy as SMART to update the noise, which is to

minimize the followingRs.

Rs(θ) =
1

n

n∑
i=1

max
||x̃i−xi||≤ε

ls(f(x̃i; θ), f(xi; θ)),

(3)
where f(·) is the model, xi is the word embedding,
x̃i is the normalized perturbed word embeddings,
θ is the parameter, and ls is the symmetrized KL
divergence loss. This measures the local Lipschitz
continuity, or in other words induces smoothness.

Finally, we use the mean and standard devia-
tion we stored to de-normalize the embeddings.
This is to maintain consistency in later steps when
we compare the adversarial logits with the regu-
lar logits which are obtained from non-normalized
embeddings. Then we feed these de-normalized
embeddings into the rest of the models, for which
the model outputs adversarial logits. Then we use
the equation 3 again to calculate the adversarial
loss, and take the sum of it and the regular training
loss for parameter update.

4 Data

We use the following datasets: 1) Twitter Hate
Speech dataset1, 2) UCI Sentiment dataset 2, 3)
CoLA dataset (Warstadt et al., 2019). The usage
will be detailed in Section 5.

5 Experiment Design and Baselines

We incorporated both DeBERTa and BERT. We
test on DeBERTa because SiFT was originally pro-
posed by the DeBERTa authors. We also test on
BERT for generalization purpose.

First, we fine-tune BERT and DeBERTa on
CoLA and with resulting Matthews Correlation Co-
efficient of 0.52 and 0.54 respectively. We record
these results to assure that our SiFT implementa-
tion does not hurt in-domain training and testing.
This is shown by comparing to the models’ perfor-
mances on CoLA after SiFT is implemented. If the
results do not vary much, then we conclude SiFT
does not affect in-domain training and testing.

Second, we define our baseline to be the follow-
ing so as to show domain generalization. We fine-
tune BERT and DeBERTa on Twitter Hate Speech
dataset. In addition, after fine-tuning the two mod-
els on Twitter Hate Speech data set, we do another

1https://www.kaggle.com/
arkhoshghalb-sentiment-analysis-hatred-speech

2http://archive.ics.uci.edu/ml/
datasets.php

https://www.kaggle.com/arkhoshghalb-sentiment-analysis-hatred-speech
https://www.kaggle.com/arkhoshghalb-sentiment-analysis-hatred-speech
http://archive.ics.uci.edu/ml/datasets.php
http://archive.ics.uci.edu/ml/datasets.php
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Model + Algorithm CoLA UCI 10%
Plain BERT 0.52 0.55

BERT w SMART 0.51 0.70
BERT w SiFT 0.53 0.80

Table 1: The middle column shows the performance
of each model + corresponding algorithm (if any) on
CoLA dataset. The rightmost column shows the per-
formance of each model + corresponding algorithm (if
any) on the remaining 90% of the UCI dataset, after it
is trained on the entire Twitter dataset as well as 10%
of the UCI dataset.

Model + Algorithm CoLA UCI 10%
Plain DeBERTa 0.54 0.56

DeBERTa w SMART 0.56 0.80
DeBERTa w SiFT 0.56 0.91

Table 2: Table structure is the same as Table 1, except
this table is for DeBERTa.

fine-tuning on UCI sentiment dataset, but with only
10% of the data. This is a setup similar to that
of the SMART paper. This shows quantitatively
the adaption of the models on out-of-domain tasks.
Finally, we test on the remaining UCI dataset to
obtain a testing performance.

We implement both SiFT and SMART on both
BERT and DeBERTa, and follow the strategy de-
scribed above. We prove that the out-of-domain
performance is improved by SiFT comparing to
SMART.

6 Testing Results & Analysis

We do multiple runs and record the average perfor-
mance, which is shown in Table 1 and 2. First, the
performances of both models on CoLA with SiFT
implemented remain close to the performances of
the plain models. We conclude that SiFT is not
affecting the model’s in-domain performance.

Then we inspect the performance on UCI dataset
to analyze the out-domain performance. The num-
bers under ”UCI 10% ” in Table 1 and 2 refer to the
testing performances on the remaining 90% data
from UCI dataset after the model is fine-tuned on
the Twitter dataset and 10% of the UCI dataset.
Note that the models with the SIFT algorithm out-
perform the models with the SMART algorithm
and the plain models. For BERT, SiFT raises the
performance from 0.70 of SMART to 0.80. For
DeBERTa, it raises the performance from 0.80 of
SMART to 0.91. Since the difference is significant

and the results are generated upon multiple runs,
we can safely conclude that SiFT has outperformed
SMART in classification

7 Conclusion

With the results we obtained from our experiments,
we can safely conclude the significance of SiFT,
that it improves models’ capability to generalize.
Models trained with SiFT algorithm will perform
better on domains they are not familiar with. How-
ever, there are limitations to our experiments. Our
experiments were on three specific datasets. Our
improvement in results can be confounded by the
underlying distribution of these datasets. In addi-
tion, we have only tested the algorithm on two spe-
cific types of classification, while there are more to
be explored, such as semantic entailment recogni-
tion. We leave the work of testing on more domain
of data to the future scholars.
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8 Ethical Considerations

The SiFT algorithm can be used in models other
than BERT and DeBERTa, such as RoBERTa and
ALBERT. In addition, SiFT can be incorporated
into other types of tasks beyond classification, such
as ranking, text generation, and even recommen-
dation system with further modification. How-
ever, the usage of SiFT might lead to both ben-
efits and risks. On the bright side, data leakage
should no longer be necessary when models using
SiFT achieves better generalization performance
that avoids the necessity for companies to acquire
more data illegally. Big tech companies can train
the model on their own data generated by user in-
puts and then used the model elsewhere publicly. In
addition, SiFT helps improve the stability and over-
all performance of a model on out-of-domain data.
Thus, SiFT might effectively restrain the possibil-
ities for data privacy breaching for some vicious
institutions.

On the other hand, SiFT can enhance institu-
tion’s ability to obtain information in areas they
previously were blocked from. For instance, con-
sider a domain of data which this institution orig-
inally had very limited access to. Now with SiFT
the institution can fine-tune their model with very
little data and achieve a decent functionality on that
domain. In real life scenarios such as e-commerce
platforms, SiFT with its normalization step mini-
mizes the gap between different domains of data,
so that malicious users might be able to follow
such strategy to get relatively accurate portraits of
users from rival e-commerce platforms. Another
potential negative impact of SiFT is that it might
reduce researcher’s interest and need for acquiring
detailed data, since embeddings will be normalized
and perturbed. The level of detail in data might be
less important with SiFT implemented, which has
unpredictable influence on data mining.
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10 Github

All code files for the current project can be found
here:
https://github.com/wangluheng328/

SiFT-Project
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