Publications

* denotes equal contributions

2024

  1. token_bounds.png
    Unlocking Tokens as Data Points for Generalization Bounds on Larger Language Models
    Sanae Lotfi*, Yilun Kuang*, Brandon Amos, Micah Goldblum, Marc Finzi, and Andrew Gordon Wilson
    ICML Workshop on Theoretical Foundations of Foundation Models (ICML Workshop), 2024 Best Paper Award
  2. doc_bounds.png
    Non-Vacuous Generalization Bounds for Large Language Models
    Sanae Lotfi*, Marc Finzi*, Yilun Kuang*, Tim G. J. Rudner, Micah Goldblum, and Andrew Gordon Wilson
    International Conference on Machine Learning (ICML), 2024
    NeurIPS Workshop on Self-Supervised Learning & Mathematics of Modern Machine Learning (NeurIPS Workshop), 2023

2023

  1. retinal_waves.png
    Unsupervised Learning on Spontaneous Retinal Activity Leads to Efficient Neural Representation Geometry
    Andrew Ligeralde*, Yilun Kuang*, Thomas Yerxa, Miah N. Pitcher, Marla Feller, and SueYeon Chung
    NeurIPS Workshop on Unifying Representations in Neural Models (NeurIPS Workshop), 2023
  2. mmcr.png
    Learning Efficient Coding of Natural Images with Maximum Manifold Capacity Representations
    Thomas Yerxa, Yilun Kuang, Eero Simoncelli, and SueYeon Chung
    Neural Information Processing Systems (NeurIPS), 2023
    Computational and Systems Neuroscience (COSYNE), 2023